

NEW DWELLING
CHURCH LANE
WHELDRAKE

YORK

DRAINAGE REPORT

1. INTRODUCTION

This drainage report has been prepared to accompany a drainage design for a new dwelling on Church Lane, Wheldrake, York.

The report outlines the drainage scheme and shows that a viable foul and surface water drainage system can be provided to the proposed development that meets current standards.

The report should be read with drawing YH427/DD/1, Drainage Design.

2. PRE-DEVELOPMENT SITE

The pre-development site is a garden area of an existing house. The garden area has an existing garage and lean-to building to the existing dwelling.

There is an existing combined drain on site, which discharges into Church Lane and, presumably, to the public sewer. The existing combined drain takes surface water from the existing dwelling and the garage and lean-to building.

3. FOUL DRAINAGE

The foul drainage from the development will be drained to the existing combined manhole at the front of the development. The levels on site are such that a gravity connection is possible.

The foul system will be separate to the surface water system.

4. SURFACE WATER

The building regulations require that surface water is disposed of through a specific hierarchy of:- by infiltration, to watercourse or to sewer in that order.

There are no watercourses present. In addition, there is very limited space on site to allow the use of soakaways for infiltration. As such, it is not practical to install soakaways, even if the ground proved suitable. Therefore, it is recommended that the surface water system is also connected to the combined manhole at the front of the development.

5. SURFACE WATER DESIGN

The existing garage and lean-to building amount to 58 square metres. Using the usually accepted discharge rate of 140l/s/hectare, the existing discharge rate for the site is 0.8l/s. However, this is a very small discharge rate. For this site a more practical discharge rate of 2l/s will be used, which is also generally accepted by the local authority.

The surface water discharge from site to sewer will be limited to 2l/s. As such, some attenuation on site will be required. To determine the attenuation requirements, the microdrainage program has been used with the following parameters.

Impermeable Area 120 sq m Storm 1 in 100 year plus 30 % climate change (all durations) M5-60 = 19 Ratio r = 0.4

The microdrainage calculations show that an attenuation system of 2.1 cu m is sufficient. The calculations are appended to the end of this report.

To reduce flows to 2l/s, a Hydrobrake chamber will be used. The attenuation will be provided by a geo-cellular system under the driveway.

6. CONCLUSIONS

- The surface water and foul systems on and off site will have separate systems.
- Foul flows will be discharged to the combined manhole at the front of the site.
- The surface water from this development can be managed successfully providing a scheme that has no flooding in the 1 in 100 year plus climate change storm.
- The scheme discharges to the surface water sewer at a reduced rate of 2.0l/s.
- A hydrobrake will limit flows to 2.0l/s.

• The required 2.1 cu m of attenuation will be provided by a geo-cellular system.

Report by

Hugh Morris BSc CEng MICE

Dated 27/05/2015

APPENDIX

MICRODRAINAGE CALCULATIONS

1 IN 100 YEAR PLUS 30% CLIMATE CHANGE

HYDROBRAKE DETAILS

MICRODRAINAGE CALCULATIONS

Survey and Site Services		Page 1 Micro Drainage	
10 The Green York Y026 5LR	CHURCH LANE WHELDRAKE		
Date 27-05-2016 File STORAGE CALC.SRCX	Designed by HM Checked by		
XP Solutions	Source Control 2015.1		

Summary of Results for 100 year Return Period (+30%)

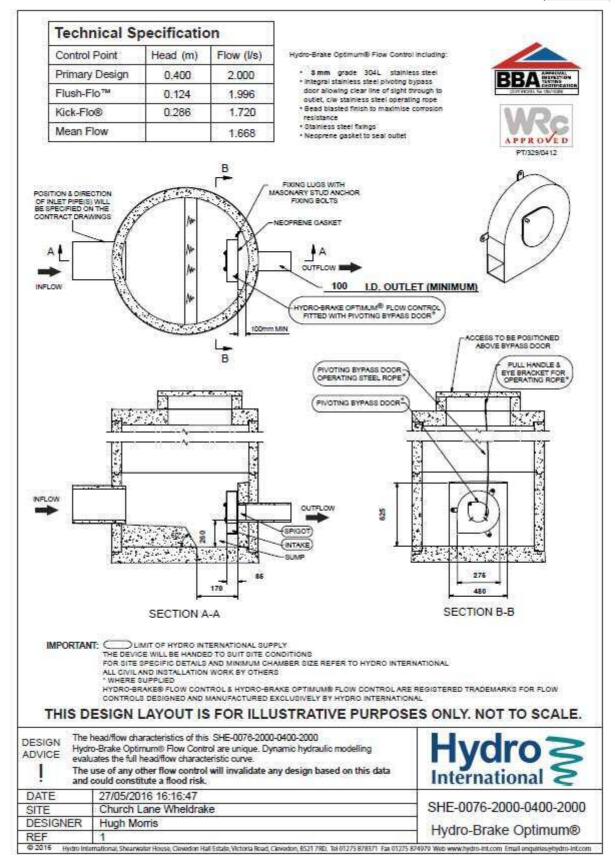
Half Drain Time : 11 minutes.

	Storm		Max	Max	Мая	Max	Max	Max	Status
			ent Level Depth		Infiltration	Control E Outfloo		Volume	56
			(m)	(m)	(1/5)	(1/s)	(1/s)	(m*)	
15	min :	Summer	12.059	0.309	0.0	2.0	2.0	1.8	O K
30	min :	Summer	12.072	0.322	0.0	2.0	2.0	1.8	OK
60	min :	Summer	12.032	0.282	0.0	2.0	2.0	1.6	O K
120	min 3	Summer	11.909	0.159	0.0	2.0	2.0	0.9	O K
180	min ;	Summer	11.824	0.074	0.0	2.0	2.0	0.4	OK
240	min 3	Summer	11.789	0.039	0.0	1.9	1.9	0.2	O K
360	min 3	Summer	11.768	0.018	0.0	1.4	1.4	0.1	OK
480	min 3	Summer	11.758	0.008	0.0	1.2	1.2	0.0	OK
600	min 3	Summer	11.752	0.002	0.0	1.0	1.0	0.0	OK
720	min :	Summer	11.750	0.000	0.0	0.9	0.9	0.0	OK
960	min :	Summer	11.750	0.000	0.0	0.7	0.7	0.0	OK
1440	min ;	Summer	11.750	0.000	0.0	0.5	0.5	0.0	O K
2160	min :	Summer	11.750	0.000	0.0	0.4	0.4	0.0	O K
2580	min 3	Summer	11.750	0.000	0.0	0.2	0.3	0.0	O K
4320	min 3	Summer	11.750	0.000	0.0	0.2	0.2	0.0	O K
5760	min 3	Summer	11.750	0.000	0.0	0.2	0.2	0.0	OK
7200	min 3	Summer	11.750	0.000	0.0	0.1	1.0	0.0	OK
8640	min 3	Summer	11.750	0.000	0.0	0.1	0.1	0.0	OK
10080	min :	Summer	11.750	0.000	0.0	0.1	0.1	0.0	OK
15	min 1	Winter	12.111	0.361	0.0	2.0	2.0	2.1	OK

Storm			Rain	Flooded	Discharge	Time-Peak
			(mm/hr)	Volume	Volume	(mins)
				(m *)	(m")	
15	min	Summer	121.269	0.0	3.2	14
30	min	Summer	79.695	0.0	4.2	22
60	min	Summer	49.937	0.0	5.3	40
120	min	Summer	20,267	0.0	6.4	7.0
180	min	Summer	22,297	0.0	7.0	98
240	min	Summer	17.851	0.0	7.5	126
360	min	Summer	12.957	0.0	8.2	184
480	min	Summer	10.330	0.0	8.7	244
600	min	Summer	8.659	0.0	9.1	304
720	min	Summer	7.492	0.0	9.4	0
960	min	Summer	5.959	0.0	10.0	0
1440	min	Summer	4.309	0.0	10.9	0
2160	min	Summer	3.110	0.0	11.8	0
2880	min	Summer	2.466	0.0	12.4	0
4320	min	Summer	1.775	0.0	13.4	0
5760	min	Summer	1.405	0.0	14.2	0
7200	min	Summer	1.171	0.0	14.7	0
8640	min	Summer	1.008	0.0	15.2	0
10080	min	Summer	0.889	0.0	15.7	0
1.5	min	Winter	121,269	0.0	3.6	15

@1982-2015 XP Solutions

Survey and Site Services	0.00-0.00 n.000 = 0.400 =	Page 2	
10 The Green York Y026 5LR	CHURCH LANE WHELDRAKE	~	
Date 27-05-2016 File STORAGE CALC.SRCX	Designed by HM Checked by	Drainage	
XP Solutions	Source Control 2015.1		


Summary of Results for 100 year Return Period (+30%)

	Storm Byent		Max	Max Max Depth Infiltration		Max E Outflow	Max	Status	
	Dvene	Level	(m)	(1/s)	(1/s)	(1/s)	(m')		
30	min Wint	er 12.119	0,369	0.0	2.0	2.0	2.1	OK	
60	min Wint	er 12.047	0.297	0.0	2.0	2.0	1.7	O K	
120	min Wint	er 11.853	0.103	0.0	2.0	2.0	0.6	0 K	
180	min Wint	er 11.784	0.034	0.0	1.8	1.8	0.2	OK	
240	min Wint	er 11.768	0.018	0.0	1.5	1.5	0.1	0 K	
360	min Wint	er 11.754	0.004	0.0	1.1	1.1	0.0	O K	
480	min Wint	er 11.750	0.000	0.0	0.9	0.9	0.0	O K	
600	min Wint	er 11.750	0.000	0.0	0.7	0.7	0.0	OK	
720	min Wint	er 11.750	0.000	0.0	0.6	0.6	0.0	OK	
960	min Wint	er 11.750	0.000	0.0	0.5	0.5	0.0	OK	
1440	min Wint	er 11.750	0.000	0.0	0.4	0.4	0.0	O K	
2160	min Wint	er 11.750	0.000	0.0	0.3	0.3	0.0	OK	
2880	min Wint	r 11.750	0.000	0.0	0.2	0.2	0.0	OK	
4320	min Wint	r 11.750	0.000	0.0	0.1	0.1	0.0	O K	
5760	min Wint	er 11.750	0.000	0.0	0.1	0.1	0.0	OK	
7200	min Wint	r 11.750	0.000	0.0	0.1	0.1	0.0	OK	
		r 11.750		0.0	0.1	0.1	0.0	OK	
10080	min Wint	r 11.750	0.000	0.0	0.1	0.1	0.0	OK	

Storm Event				Volume	Volume	Time-Peak (mins)	
				(m,)	(m*)		
30	man	Winter	79.695	0.0	4.7	24	
60	min	Winter	49.937	0.0	5.9	42	
120	min	Winter	30.267	0.0	7.1	72	
180	min	Winter	22.297	0.0	7.9	96	
240	min	Winter	17.851	0.0	8.4	126	
360	min	Winter	12.957	0.0	9.1	186	
480	min	Winter	10.330	0.0	9.7	0	
600	min	Winter	8.659	0.0	10.2	0	
720	min	Winter	7.492	0.0	10.6	0	
960	min	Winter	5.959	0.0	11.2	0	
1440	min	Winter	4.309	0.0	12.2	0 0 0	
2160	min	Winter	3,110	0.0	13.2	0	
2880	min	Winter	2.466	0.0	13.9	0	
4320	min	Winter	1.775	0.0	15.0	0	
5760	min	Winter	1.405	0.0	15.9		
7200	min	Winter	1.171	0.0	16.5	0	
8640	min	Winter	1.008	0.0	17.1	0	
10088	min	Winter	0.889	0.0	17.6	0	

©1982-2015 XP Solutions

